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The sound generated by the interaction between convected vortical and entropic
disturbances and a blade row is a significant component of the total noise emitted
by a modern aeroengine, and the blade geometry has an important effect on this
process. As a first step in the development of a general prediction scheme, we model
in this paper just the action of the blade mean loading by treating the blades as
flat plates aligned at a non-zero incidence angle, δ, to the oncoming stream, and
consider harmonic components of the incident field with reduced frequency k. We
then use asymptotic analysis in the realistic limit k � 1, δ � 1 with kδ = O(1)
to make a consistent asymptotic expansion of the compressible Euler equations.
The flow is seen to consist of inner regions around each leading edge, in which
sound is generated by the local gust–airfoil and gust–flow interactions, and an outer
region in which both the incident gust is distorted according to rapid distortion
theory and the out-going sound is refracted by the non-uniform mean flow. The
complicated multiple interactions between the sound and the cascade are included to
the appropriate asymptotic order, and analytical expressions for the forward radiation
are derived. It is seen that even a relatively small value of δ can have a significant
effect, thanks to both the O(δk1/2) change in the amplitudes and the O(kδ) change
in the phases of the various radiation components, corresponding to the additional
source mechanisms associated with the flow distortion around each leading edge and
the effects of propagation through the non-uniform flow, respectively. Further work
will extend this analysis to include the effects of camber and thickness.

1. Introduction
The continued environmental pressure to reduce community noise levels around

large airports, coupled with the development of increasingly advanced aeroengines,
has lead to the need for ever more accurate aeroacoustic prediction techniques. One
of the most significant noise sources on the high-bypass ratio systems in use (and on
the ultra-high bypass contrafan systems currently being planned) is the interaction
between wakes shed by an upstream rotating blade row, such as the fan or the
rotor rows in the compressor, and a downstream obstacle, such as the outlet guide
vanes in the case of the fan or the stators in the case of the compressor. A proper
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understanding of the mechanisms involved and an ability to predict the resulting
noise are both essential, and these issues are addressed in this paper.

The usual approach, which will be adopted here, is to suppose that the stator
row can be unrolled into an infinite two-dimensional cascade of blades, and this
is a good approximation provided that strong radial flows are not present. The
incident wake distribution, which consists of vorticity and entropy fluctuations, is
then taken to be steady in a frame moving with the forward row, so that in the
stator frame it can be decomposed into a series of circumferential modes, which for
the cascade geometry reduce to harmonic gusts convected by the local mean flow.
The first numerical solution to this sort of problem, in which the blades were taken
as flat plates perfectly aligned with a uniform mean flow, was developed by Smith
(1972) – further details are to be found in Whitehead (1987). Since then, considerable
effort has been put into developing numerical procedures which take proper account
of the non-uniform flow, and typical approaches have involved either solution of
the full time-dependent Euler equations, or solution of the nonlinear steady base
flow followed by a linearized calculation of the time-dependent perturbation, and a
review has recently been given by Verdon (1993). In particular, Atassi and co-workers
have solved numerically the linearized equations derived from Goldstein’s (1978)
version of rapid distortion theory: Atassi, Subramaniam & Scott (1990) and Scott
& Atassi (1990) consider an isolated airfoil, while Fang & Atassi (1993) consider a
cascade. However, we believe that very considerable progress can also be made on
this problem using a blend of analytical and asymptotic techniques, without the need
for extensive numerical calculation. Such an approach has the particular benefit of
providing a considerable level of physical insight, as well as being the basis for a
comprehensive prediction scheme, and we describe the first stages in this analysis
here.

One of the key features of the interaction process is the effect of the stator-blade
geometry, namely its camber and thickness distributions and the inclination to the
oncoming flow. It will be seen that these features act to modify the local flow so as
to both distort the incident disturbance, and to affect the resulting sound generation.
We therefore propose to treat these three geometrical features separately, and solve
a suite of model problems, the solutions to which will be combined at a later stage.
Here we consider the effect of blade inclination, or mean loading, for a flat-plate
airfoil and future papers will be concerned with the effects of the blade camber and
thickness. Further, we concentrate on the practically important forward radiation;
the rearward radiation (required for calculation of the passage of acoustic radiation
through the engine) and the unsteady lift distribution on the blades (required for
fatigue and performance studies) can also be determined, and will be described in
future work. We therefore consider the model problem of a cascade of flat plates
of zero thickness inclined at an angle δ to the upstream flow, and suppose that
vorticity and entropy gusts of reduced frequency k are incident on the cascade from
far upstream. In order to make progress, we will take the entirely realistic limits of
δ � 1 and k � 1, and our aim will then be to make consistent asymptotic expansions
of the unsteady compressible Euler equations in the preferred limit kδ = O(1).

Our solution extends two previous lines of investigation. The first concerns the
interaction between high-frequency convected gusts and an isolated airfoil inclined
at a small angle to an oncoming stream, which has been investigated by Myers &
Kerschen (1984, 1995) and Kerschen & Myers (1987). They showed that the flow
can be described through a number of asymptotic regions, which are then matched
together to yield algebraic expressions for the far-field radiation. The inner region
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scales on the gust wavelength and is centred on the airfoil leading edge. In this
region noise is generated by the interaction between the incident gust and both the
airfoil surface and the local mean-flow gradients. Additional discussion of the physics
of these sound generation processes can be found in Myers & Kerschen (1995). In
the outer region no sound is generated; the incident gust is convected along the
streamlines of the non-uniform mean flow, and distorts before reaching the inner
region according to Goldstein’s (1978) version of rapid distortion theory, while the
sound generated in the inner region is refracted as it propagates back to the far field.
In addition, a trailing-edge inner region and a transition region across the blade wake
are also present.

The second previous line of investigation concerns the interaction between con-
vected gusts and a cascade of flat-plate airfoils aligned parallel to the oncoming
stream (i.e. δ = 0). Koch (1971) and Peake (1993) presented solutions based on the
Wiener–Hopf technique, the kernel decomposition being completed in terms of a
number of rather complicated infinite-product factors. Peake (1992) and Peake &
Kerschen (1995a) have derived asymptotic representations for high frequencies, rigor-
ously accounting for the multiple scattering and reflection effects in a way that does
not rely on the infinite-product decomposition.

Our aim is therefore to combine these two approaches, but it turns out that the
previous asymptotic approximations for the zero-incidence cascade problem are too
complicated to allow direct extension to the case δ 6= 0. The first step is therefore to
derive a physically based high-frequency expansion for δ = 0, in which the point of
generation of each radiation component and its subsequent scattering by other blades
is determined explicitly, and an asymptotic formula for the modal coefficients of the
upstream radiation, which agrees well with exact results, has indeed been determined
in this way. This physically based expansion is also fully consistent with Peake’s
(1992) result. Once this has been completed, the case δ 6= 0 can be investigated.
The non-uniform steady flow through the cascade is found via a Prandtl–Glauert
transformation and an exact conformal mapping, and the distortion of the gust as
it convects from upstream towards the cascade is then determined. The subsequent
interaction of the gust with the blade leading edges occurs in regions of size O(k−1)
around each leading edge, and is treated in the same way as described by Myers
& Kerschen (1995) for the isolated blade. This local interaction produces outgoing
sound waves, which are then scattered and reflected by the other blades in the
cascade, essentially in the way described by our above high-frequency approximation
for δ = 0, before eventually reaching an observer in the far field. By combining
all these elements, asymptotic expressions for the upstream radiation can be found,
and we derive the first two terms in the expansions of both the amplitude and the
phase. A number of consistent simplifications arise naturally from the asymptotic
analysis, including the facts that the trailing edges of the cascade have no effect on
the forward radiation to this order, and that the non-uniformities in the mean flow
have no effect on the rescattering of the field from a given leading edge by other
leading edges.

The analysis is presented as follows. The basic formulation of the problem is
presented in §2. In §3 we investigate the simple case δ = 0, and validate our high-
frequency approximation by comparison with an exact numerical solution. The steady
flow through the cascade is described in §4 and Appendices, and in §5 we show how
the theory presented in §3 is extended to the case δ 6= 0. Sample results, showing that
the mean loading can have a very significant effect, are presented, and further results
are also given in Peake & Kerschen (1995b).
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Figure 1. The cascade geometry in physical space.

2. Mathematical formulation
We consider an infinite cascade of rigid flat-plate blades, each of chord length 2b∗,

with adjacent leading edges separated by a distance ∆∗ and with stagger angle α∗; the
corresponding transverse and longitudinal edge separations are s∗ and d∗, respectively
(we use the suffix ∗ to denote lengths and angles in physical space). We note that in
practice ∆∗ = O(b∗) and α∗ = O(1). Far upstream of the cascade there is a uniform
steady subsonic mean flow of speed U∞, which is aligned at an angle δ to the blade
chords, and the upstream Mach number is M∞ = U∞/c∞ < 1, with c∞ the uniform
upstream sound speed. The x∗- and y∗-axes are chosen as in figure 1, with the x∗-axis
aligned parallel to the upstream flow, and the blades are supposed to have an infinite
span in the z∗-direction. The blades are labelled n = 0,±1,±2, . . ., as shown. In the
very simple case of δ = 0, the inviscid flow through the cascade is a uniform stream
and the blades experience zero mean loading, but when δ 6= 0 the on-coming flow
is deflected by the cascade resulting in mean flow gradients and a steady lift force
on the blades – we denote the steady flow velocity as U . In this paper we aim to
investigate the effects of this non-uniform flow on the sound generation properties of
the cascade.

We suppose that weak vortical and entropic disturbances, of typical non-dimensional
amplitude ε with ε � 1, are present far upstream, which are convected and distorted
by the steady non-uniform base flow and interact with the cascade to produce noise.
This process is best described using Goldstein’s (1978) version of rapid distortion
theory, in which the unsteady velocity field, u′, is considered as a small perturbation
to the steady base flow U , and is written in the form

u′ = ∇G′ + v′, (2.1)

where v′ contains the upstream vorticity fluctuations as well as vorticity generated
by interaction with the non-uniform mean flow. The field v′ can be determined
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analytically, while the unsteady velocity potential G′ satisfies an inhomogeneous form
of the convected wave equation describing linear disturbances to the non-uniform
base flow (equation 2.30 in Goldstein 1978). The vortical field v′ appears both in the
volume source and in the boundary condition which G′ satisfies on the blade surfaces.

We now proceed as in Myers & Kerschen (1995), and transform from the physical
coordinates x∗ and y∗ to non-dimensional steady-flow potential and streamfunction
coordinates φ and ψ. The dimensional steady velocity field is given in terms of the
physical potential and streamfunction by

U =

(
∂φ∗

∂x∗
,
∂φ∗

∂y∗

)
=

(
ρ∞

ρ∗

∂ψ∗

∂y∗
,
−ρ∞
ρ∗

∂ψ∗

∂x∗

)
, (2.2)

where ρ∗ is the steady local fluid density which takes the value ρ∞ at upstream infinity,
and then φ and ψ are given simply by

φ = φ∗/U∞b∗, ψ = β∞ψ∗/U∞b∗ (2.3)

respectively, with β∞ = (1−M2
∞)1/2. This transformation will prove particularly

advantageous, since the upstream disturbances are convected along the mean flow
streamlines, and the gust distortion will be given in a convenient form. We now
suppose that the upstream vortical and entropic disturbances are just harmonic
waves with dimensional frequency ω, so that

v′∼ εU∞(At, AN, Az) exp(ik[φ+ knψ + kzz − t]),
s′∼ 2cpεB exp(ik[φ+ knψ + kzz − t]),

}
(2.4)

as φ → −∞, where k = ωb∗/U∞ is the aerodynamic reduced frequency, z = z∗/b∗
is the normalized spanwise coordinate, cp is the specific heat at constant pressure,
and time t has been normalized by b∗/U∞. By mass conservation it follows that v′ is
solenoidal upstream, and this in turn leads to the restriction

At + ANknβ∞ + Azkz = 0. (2.5)

Given the upstream form of the gust, Kerschen & Balsa (1981) have determined v′

and s′ everywhere in the fluid in the form

v′= εU∞

(
A∗t U∞

|U | +
B|U |
U∞

, ρ∗
|U |
ρ∞U∞

[
AN + β∞A

∗
t

∂g

∂ψ

]
, Az

)
exp(ikχ),

s′= 2cpεB exp(ikχ),

 (2.6)

where

χ = φ+ knψ + kzz + g(φ, ψ)− t, (2.7)

the quantity A∗t is

A∗t = At − B (2.8)

and g(φ, ψ) is Lighthill’s drift function

g(φ, ψ) =

∫ φ

−∞

[
U2
∞

|U |2(ξ, ψ)
− 1

]
dξ. (2.9)

The drift function represents the cumulative distortion of vortex lines approaching
the cascade; far upstream, in the limit φ → −∞, we see that g → 0 and that (2.4) is
regained from (2.6). The quantity A∗t expresses the fact that the interaction between
the entropy fluctuation and the non-uniform mean flow generates additional velocity
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fluctuations, while the entropy fluctuation itself is simply convected with the mean
flow.

We now suppose that the incidence angle δ satisfies δ � 1, so that the steady flow
takes the form of uniform flow U∞ plus a small non-uniform perturbation of size
O(δ), and this perturbation can then be described in terms of the complex potential
δF(ζ), where ζ = φ+iψ. In §4 a Prandtl–Glauert transformation will be used to relate
δF(ζ) to the complex potential for an incompressible flow through a cascade, which
can in turn be determined using the theory of conformal mappings. We note here,
however, that it is easy to show that F ′(ζ) = q − iµ, where δU∞q is the dimensional
perturbation to the mean-flow speed U∞ and δβ∞µ is the perturbation in steady flow
angle.

The modified unsteady velocity potential h(φ, ψ), which is related to the dimensional
unsteady velocity potential G′ by

G′ = εU∞b∗h(φ, ψ) exp(ik[kzz − t−M2
∞φ/β

2
∞]) exp(δM2

∞q), (2.10)

is now introduced, and we suppose further that ε � δ � 1, so that the unsteady
disturbances are much smaller than the steady disturbance produced by the mean
loading. (This assumption is often valid for blade-row interactions of interest in
applications and will make the subsequent analysis tractable, in particular allowing
the gust to be treated as a small perturbation to the non-uniform steady flow.) In this
limit, Kerschen & Myers (1986) were able to show that Goldstein’s equation for G′

reduces to

(L0 + δL1)(h) = δkS (φ, ψ) exp(ikΩ), (2.11)

where the operator L0 is simply the Helmholtz operator with wavenumber kw, and
w is defined by

w2 = (M∞/β
2
∞)2 − (kz/β∞)2. (2.12)

The quantity kw is the acoustic reduced frequency. The source term on the right-
hand side of (2.11) indicates the presence of volume sound sources in the flow,
which arise due to the interaction of the convected disturbances and the mean flow
gradients. Myers & Kerschen (1995) showed that, in the high-frequency limit, the
only volume sources which produce significant sound radiation are those located in
the neighbourhood of each blade leading edge. The operator L1 is a second-order
operator with variable coefficients which depend on the mean flow, and accounts
for the refraction of sound waves propagating through the non-uniform steady flow.
The complicated expressions for L1 and S exp(ikΩ) are given by Myers & Kerschen
(1995, equations 2.5a,b), and need not be repeated here.

The zero-normal-velocity boundary condition on the blade surfaces can be trans-
formed into φ, ψ space in a straightforward manner, and it turns out that

∂h

∂ψ
+ δM2

∞
∂q

∂ψ
h = −

[
AN

β∞
(1− δM2

∞q)− 2δA∗t µ

]
exp(ikΩ) (2.13)

applied on the blade surfaces, where the left-hand side corresponds to the cross-
stream velocity component of the irrotational unsteady flow. Again, significant sound
radiation is produced only by the contributions from the vicinity of each leading edge.
It is also helpful to note here that the dimensional acoustic pressure, p′, is given by

p′ = −ερ∞U2
∞

{[
∂h

∂φ
− i

k

β2
∞
h

]
exp(ik[kzz − t−M2

∞φ/β
2
∞])

}
. (2.14)

Finally, given the spatial periodicity of the steady flow and of the incident gusts,
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it follows that when considered as a function of position x∗ in physical space, the
unsteady velocity potential G′ obeys the quasi-periodic condition

G′(x∗ + ∆∗t, t) = exp(iσ)G′(x∗, t), (2.15)

where t is the unit vector along the front face of the cascade (see figure 1) and σ is
the gust inter-blade phase angle

σ = kd+ kkns, (2.16)

where s and d are the transverse and longitudinal separations of the blades in φ,
ψ space (see figure 5). The modified potential h(φ, ψ) satisfies the corresponding
quasi-periodicity condition

h(φ+ d, ψ + s) = exp(iσ′)h(φ, ψ), (2.17)

where the modified inter-blade phase angle σ′ is given by

σ′ = σ +
kM2

∞d

β2
∞

. (2.18)

It is easy to see that when δ = 0 the boundary-value problem specified by (2.11)–
(2.15) reduces to the usual unloaded cascade problem studied by Koch (1971) and
Peake (1993). Our aim here is to determine the first two terms in the amplitude
and the phase of the asymptotic solution of (2.11)–(2.15) with δ � 1, k � 1 and
kδ = O(1), and hence to derive the correction to the forward radiation for non-zero
δ. Specifically, it turns out that the modified unsteady velocity potential ahead of the
cascade is composed of a superposition of plane-wave modes, each of the form

(a0 + a1 + . . .) exp(ib0 + ib1 + . . .), (2.19)

where a0 = O(k−2), a1 = O(k−5/2, δk−3/2), b0 = O(k) and b1 = O(kδ). In this paper we
determine a0,1 and b0,1. Before doing this, however, we need to reconsider the cascade
problem for δ = 0, in order to cast its solution into a form suitable for the extension
envisaged above, and this will be described in the next section.

3. Unsteady flow for zero mean loading
The scattering of upstream disturbances by a cascade of flat plates aligned parallel

to a uniform mean flow, and related problems, have been investigated by a number
of authors (see the references in Peake 1992), and the solution is completed using the
Wiener–Hopf technique to yield expressions for the radiation in terms of a number of
infinite-product factors. The difficulty with these results, however, is that the various
terms cannot be given a straightforward physical interpretation, and so cannot be
extended to include the effects of mean loading. In this section we therefore derive an
alternative and more physically based description of the case of zero mean loading
(δ = 0), based on our high-frequency limit k � 1. Once this has been done the exten-
sion to the case δ 6= 0 will be completed in §§4 and 5. Here, we calculate the first two
terms in the high-frequency expansion of the radiation ahead of the cascade, thereby
extending the earlier work of Envia & Kerschen (1986), who found just the first term.

We note first that the steady-flow potential and streamfunction for zero mean
loading, denoted φ0 and ψ0 respectively, are simply proportional to the physical
coordinates, and that the cascade in physical space maps onto a cascade in φ0, ψ0 space
(or Prandtl–Glauert space) with chord length 2, with stagger angle α0 = tan−1 β∞s∗/d∗
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Contribution (iii)

Contribution (iv)
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(direct field)

Figure 2. The principal radiation components reaching an upstream observer for kw � 1.

and with a separation between adjacent leading edges of

∆0 = (d2
∗ + β2

∞s
2
∗)

1/2/b∗. (3.1)

We fix the arbitrary constants associated with the potential and streamfunction by
supposing that the leading edge of the zeroth blade is mapped onto the origin in φ0,
ψ0 space. Here, and in what follows, the suffix 0 indicates that we are considering the
case δ = 0. We note here that when δ = 0 the normal velocity boundary condition
(2.13) reduces to ∂h/∂ψ0 = −(AN/β∞) exp(ikφ/β2

∞).
The high-frequency parameter for the cascade analysis of this section is the

wavenumber kw appearing in the Helmholtz operator L0, which is an effective
acoustic reduced frequency for the field h(φ, ψ) based on the airfoil semi-chord b∗
and the projected acoustic wavelength in the two-dimensional φ, ψ space. The effects
of the mean flow and of disturbance three-dimensionality on the projected acoustic
wavelength are contained in the parameter w. In our analysis for the general case
δ 6= 0 we must consider the evolution of both convected and acoustic disturbances,
and we shall therefore take the formal limit k � 1, w = O(1). For the high subsonic
Mach numbers of practical interest, however, we see that typically w > 1, suggesting
that our asymptotic approximations will be valid for a wider range of k than might
at first have been supposed, and this will be confirmed in §3.4. When w is small,
for instance for a highly swept gust for which kz is near M∞/β∞, the high-frequency
approach described here cannot be applied for realistic values of k, but such cases
seem of less practical interest and will be ignored.

3.1. Identification of the radiation components

In the limit kw � 1, it can be shown that the radiation reaching an observer in the
far field ahead of the cascade consists of the four components illustrated in figure 2.
These components arise as follows:

(i) sound is generated by the interaction between the gust and each blade leading
edge, and propagates directly to the observer without interacting with any other blades
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– this is exactly equivalent to the radiation produced by the interaction between the
gust and an isolated leading edge, and is referred to as the direct field, as calculated
by Envia & Kerschen (1986);

(ii) the direct field from a given leading edge will travel along the front face of the
cascade according to a complicated Fresnel-diffraction process, and will interact with
all the other leading edges to produce more radiation, some of which will then travel
directly to the observer;

(iii) from a given leading edge, the direct field in the negative ψ0-direction will be
reflected by the lower blade and then rescattered by the leading edge from which it
originated. Some of this rescattered field will then reach the observer directly and
some will be rereflected by the lower blade back to the leading edge, and the process
will continue indefinitely;

(iv) for a staggered cascade the total field emitted from a given leading edge in the
sector π+ α0 < θ < 3π/2 is reflected by the adjacent lower blade, before reaching the
observer.

The total unsteady field ahead of the cascade is of course composed of many
more components, including the multiple rescattering by other leading edges, and
the radiation produced by the complicated interactions between these components
and the trailing edges of the cascade. However, since the modified velocity potential
of the direct field is O((kw)−3/2) and since the leading-edge diffraction coefficient is
proportional to (kw)−1/2, it is clear that contributions to the radiation which emanate
from one given leading edge and are then rescattered more than once before reaching
the observer will be O((kw)−5/2) or smaller, and will not feature in the first two terms
in our asymptotic expansion. In addition, the effects of the trailing edges do not arise
to this asymptotic order, but we will delay full justification of this point until after
the first two terms have been calculated; we merely note at this stage that since the
trailing edge can be neglected, the blades are taken to be semi-infinite in the positive
φ0-direction when calculating the four contributions described above.

By using Fourier transforms and the Wiener–Hopf technique and then applying
the method of steepest descents (the analysis is described in detail in the context of
acoustic wave scattering in chapter 2 of Noble 1988; the gust interaction prolem,
including extensions to account for mean-loading effects, is described in Myers &
Kerschen 1995), it is straightforward to show that the far-field limit of the modified
unsteady velocity potential, h(φ0, ψ0), for the direct field generated by the incident
gust striking the leading edge of blade n is

AND0(θn,−1/β2
∞) exp(ikwrn + inσ′0)

k3/2β∞r
1/2
n

, (3.2)

where the distance rn and angle θn (0 < θn < 2π) are the observer polar coordinates
in φ0, ψ0 space relative to the leading edge of the nth blade, and the directivity D0 is
given by

D0(θ, µ) =
exp(−iπ/4) cos θ/2

π1/2(w cos θ + µ)(w − µ)1/2
. (3.3)

The factor cos θ/2 is characteristic of edge radiation. In addition, the modified inter-
blade phase angle σ′0 can be found by replacing s and d in (2.16) and (2.18) by s0 and
d0. It should be noted that the field decays cylindrically away from the leading edge,
and corresponds to the radiation from an effective point source (of fractional order
3
2
) located at the leading edge of blade n. This is contribution (i).
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We now consider contribution (ii). The direct field from, say, blade 0 will travel
along the front face of the cascade and will be scattered by all the other blade
leading edges, and in order to calculate the radiation produced we need to know the
fraction of this direct field reaching the leading edge of blade n, for each n. The case
n = ±1 is trivial, and the case n = ±2 can be completed using Macdonald’s formula
(in Goldstein 1976) for the radiation generated by a point source separated from
the observer by a rigid half-plane. However, it does not seem possible to generalize
Macdonald’s result to the case of more than one intervening half-plane, particularly in
view of the fact that we need to know the field along a geometrical optics boundary,
which must necessarily be governed by a complicated Fresnel-diffraction process.
However, Lee (1978) has shown, in the electromagnetic context that to leading order
in (large) k the proportion of the direct field from blade 0 reaching the leading edge
of blade n is simply the direct field which would have arrived if no intervening blades
had been present, multiplied by the factor 1/n; when n = 2, this simple result reduces
to the high-frequency limit of Macdonald’s formula. In physical terms, the Fresnel
component of the radiation is retained (for which the unsteady velocity potential is
O((kw)−3/2), while the diffracted components generated by the scattering of the direct
field at each intervening blade leading edge are O((kw)−2) and are neglected by Lee.
It follows that the accuracy of Lee’s result is entirely consistent with the order of
our asymptotic expansion. The direct field from the leading edge of blade 0 therefore
decays like n−3/2 along the front face of the cascade, thanks to a combination of
Lee’s result and cylindrical spreading. (It is worth noting that the application of Lee’s
result to the present problem has been facilitated by the transformation (2.10), which
leads to the appearance of the Helmholtz operator at leading order in (2.11)). It turns
out that contribution (iii) can be treated in exactly the same way as (ii), because the
component of the re-radiated sound in the back-scattered direction is governed by
the same Fresnel process as the field propagating along the front face; the fraction
of the direct field which returns to the leading edge after n reflections by the lower
blade is simply 1/n to leading order in k.

Since kw � 1 and ∆∗ = O(b∗), each leading edge is in the acoustic far field of a
source located at any other leading edge, so that the far-field form of the direct field,
as given in (3.3), can be used in calculating the above components. It therefore follows
that the total sound field which falls on the leading edge of blade n can be calculated
using these results, and is found to have unsteady velocity potential

exp(inσ′0)

k3/2

[
B1

0 exp(−ikw(cos α0φ
n
0 + sin α0ψ

n
0)) + B2

0 exp(ikw(cos α0φ
n
0 + sin α0ψ

n
0))

+B3
0 exp(ikwψn0)

]
+ O

(
(kw)−2

)
, (3.4)

where

B1
0 =

∞∑
m=1

{
AND0(π + α0,−1/β2

∞) exp(ikwm∆0 + imσ′0)

β∞m3/2∆
1/2
0

}
,

B2
0 =

∞∑
m=1

{
AND0(α0,−1/β2

∞) exp(ikwm∆0 − imσ′0)

β∞m3/2∆
1/2
0

}
,

B3
0 =

∞∑
m=1

{
AND0(3π/2,−1/β2

∞) exp(2ikwms0)

β∞m3/2(2s0)1/2

}
.


(3.5)
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In (3.4), the alternative coordinates φn0, ψ
n
0 are centred on the nth leading edge, the first

term corresponds to the direct fields from the leading edges of blades n+ 1, n+ 2, . . .,
the second term to the direct fields from blades n−1, n−2, . . . and the third term is the
multiply reflected contribution referred to in (iii) above. Now that we have calculated
the acoustic radiation falling on the nth leading edge, it is an easy matter to find the
radiation reaching the far field: the total radiation (excluding contribution (iv) for the
moment) reaching an upstream observer from leading edge n is simply the sum of the
direct field (3.2) and the field generated by the scattering of the incident field (3.4).
We write the unsteady velocity potential for this radiation as fn0(φn0, ψ

n
0), and using

the same approach as was used in calculating the direct field (3.2) find that upstream

fn0(φn0, ψ
n
0) =

exp(ikwrn + inσ′0)

k3/2r
1/2
n

{
AN

β∞
D0(θn,−1/β2

∞)− iB1
0w sin α0

k1/2
D0(θn, w cos α0)

+
iwB2

0 sin α0

k1/2
D0(θn,−w cos α0) +

iwB3
0

k1/2
D0(θn, 0)

}
. (3.6)

Finally, we now take account of contribution (iv) by noting that the reflection of
the field (3.6) by the adjacent lower blade can be represented by introducing an image
source at the point (φn0 = 0, ψn0 = −2s0), and that the observer in the far field will
only receive a contribution from this image provided that π/2 < θn < π−α0. We have
therefore calculated the far-field radiation emanating from the leading edge of blade
n, and the unsteady velocity potential of the total radiation reaching the observer
in the far field is then simply obtained by adding together the radiation from each
leading edge, and has unsteady potential

h0(φ0, ψ0) =

∞∑
n=−∞

[
fn0(φn0, ψ

n
0) + fn0(φn0,−ψn0 − 2s0) {H(θn − π/2)−H(θn − π + α0)}

+O((kw)−5/2)

]
, (3.7)

where H is the unit step function, and the second term in the summation arises from
the reflection by the lower blade.

3.2. Determination of the modal structure

The above analysis has made it clear that, at high frequency, the radiation ahead
of the cascade can be thought of as being generated by a point source located at
each blade leading edge. The field of each point source decays cylindrically with
distance, but when these individual components are added together we will find that
the total radiation is in fact composed of plane-wave modes ahead of the cascade.
This is best seen by employing the technique described by Envia & Kerschen (1986),
and since their analysis was for an unstaggered cascade we will describe here the
main steps in the more general approach for non-zero stagger. We begin by defining
new coordinates φ̃0 and ψ̃0 centred on the leading edge of blade 0 but aligned
perpendicular to and along the front face of the cascade, respectively, and with the
φ̃0-axis pointing downstream. We then note that the phase difference between the
unsteady fields from adjacent leading edges is simply σ′0, and write

fn0(φn0, ψ
n
0) ≡ F(θn)

r
1/2
n

exp(inσ′0 + ikwrn), (3.8)

where expressions for rn and θn in terms of φ̃0 and ψ̃0 can easily be derived, and where
F(θn) is independent of n except through its argument θn. For clarity, we consider just
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the first series in (3.7) – i.e. the field without the reflection – and include the second
term later. We proceed by expressing each term in this series as an integral over a
new coordinate ξ in the ψ̃0-direction by use of the Dirac delta function to give
∞∑

n=−∞
fn0(φn0, ψ

n
0) =

∞∑
n=−∞

∫ ∞
−∞

F(θn(ξ))

(φ̃2
0 + ξ2)1/4

exp(inσ′0 + ikw(φ̃2
0 + ξ2)1/2)δ(ξ − ψ̃0 + ∆0n)dξ.

(3.9)

By exchanging the orders of integration and summation, re-expressing the resulting
sum of delta functions as a sum of exponentials using Poisson’s summation formula
(see Jones 1966, p. 137) in the form

∞∑
n=−∞

exp(inσ′0)δ(∆0n+ ξ − ψ̃0) =
1

∆0

∞∑
n=−∞

exp(i(ξ − ψ̃0)(2πn− σ′0)/∆0), (3.10)

and applying the transformation ξ = |φ̃0|ζ, we find that
∞∑

n=−∞
fn0(φn0, ψ

n
0) =

|φ̃0|1/2
∆0

∞∑
n=−∞

exp(−iψ̃0(2nπ−σ′0)/∆0)

∫ ∞
−∞

F(θn(ζ))

(1 + ζ2)1/4
exp(|φ̃0|F(ζ))dζ.

(3.11)
Here we have

F(ζ) = ikw(1 + ζ2)1/2 + i(2nπ − σ′0)ζ/∆0, (3.12)

and θn(ζ) has now become independent of n thanks to the replacement of ψ̃0 by ξ
(or ζ), and is given by

θn(ζ) ≡ θ(ζ) = tan−1

[
ζ sin α0 − sgn(φ̃0) cos α0

ζ cos α0 + sgn(φ̃0) sin α0

]
. (3.13)

Since our aim is to determine the far-field radiation upstream, we now apply the limit
φ̃0 → −∞ and use the method of steepest descents to evaluate the limiting form of
(3.11). It turns out that for each n, F(ζ) possesses a single saddle point at

ζn0s =
−(2nπ − σ′0)

[∆2
0k

2w2 − (2nπ − σ′0)2]1/2
, (3.14)

so that the integral in (3.11) is dominated by contributions from the neighbourhood
of ζ = ζn0s. There is a finite range of n for which ζn0s is real; these correspond to
propagating plane-wave modes. For other values of n the saddle point ζn0s is imaginary;
these correspond to modes that are exponentially attenuated with upstream distance
and can be neglected in calculating the far-field radiation. After some considerable,
but straightforward manipulation we find that

∞∑
n=−∞

fn0(φn0, ψ
n
0) ∼

q0∑
n=−r0

Rn(θ(ζn0s)) exp(−iσn0φ0 − iηn0ψ0) as φ̃0 → −∞, (3.15)

where the coefficients Rn(θ) are given by

Rn(θ) =
exp(iπ/4)(2π)1/2w1/2

k
[
∆2

0k
2w2 − (2nπ − σ′0)2

]1/2 [ANβ∞ D0

(
θ,−1/β2

∞
)

− iB1
0w sin α0

k1/2
D0 (θ, w cos α0) +

iB2
0w sin α0

k1/2
D0 (θ,−w cos α0)

+
iB3

0w

k1/2
D0 (θ, 0)

]
+ O((kw)−3) (3.16)



Noise generated by the interaction of gusts with a flat-plate cascade 327

and the modal wavenumbers σn0 and ηn0 are

σn0 = [(2nπ − σ′0) cos α0 + sin α0(∆
2
0k

2w2 − (2nπ − σ′0)2)1/2]/∆0,

ηn0 = [(2nπ − σ′0) sin α0 − cos α0(∆
2
0k

2w2 − (2nπ − σ′0)2)1/2]/∆0,

}
(3.17)

where n is now the mode index. The cut-on modes satisfy −r0 6 n 6 q0, where −r0
and q0 are the smallest and largest values of n for which the square-root in (3.17) is
real. At this point we return to (3.7), include the second series in exactly the same
way as above and transform back to physical coordinates, to find that the far-field
limit of the modified unsteady velocity potential ahead of the cascade is given as a
superposition of radiating plane-wave modes in the form

q0∑
n=−r0

Rn(θ(ζn0s)) exp(−iσn0x∗/b∗ − iηn0β∞y∗/b∗), (3.18)

where

Rn(θ) = Rn(θ) +Rn(2π − θ) exp(−2is0η
n
0){H(θ − π/2)−H(θ − π + α0)}

= Rn(θ)
[
1− exp(−2is0η

n
0){H(θ − π/2)−H(θ − π + α0)}

]
, (3.19)

and the second step in (3.19) has been completed by noting that D0(θ) = −D0(2π−θ).
To summarize, we have found the modal representation of the modified potential

of the acoustic field upstream of the cascade, in the large-kw limit. The first two
terms of the asymptotic expansion in kw have been derived. For large kw, the number
of propagating modes is proportional to kw; the first two terms in the asymptotic
expansions for the modal coefficients Rn are seen from (3.16) to be of O((kw)−2)
and O((kw)−5/2) respectively. Note also that equation (3.18) is consistent with Peake’s
(1992) results, in that if an expression for the upstream radiation is derived using
his method and then expanded for high reduced frequency, then the resulting first
two terms agree exactly with (3.18). It is again emphasized, however, that the present
method, in which the generation and propagation of each radiation component is
derived explicitly, is the only analytical approach which allows the extension to
non-uniform mean flow.

3.3. Neglect of trailing edges

We recall that our asymptotic expansion has been derived by assuming that the
trailing edges of the cascade can be neglected, and we are now in a position to justify
this. It is clear from (3.16) that the direct field (contribution i) produces modes ahead
of the cascade with amplitude O((kw)−2), i.e. the first term in (3.16), and it could
also be shown (see Peake 1992, p. 271, equation 28) that downstream-travelling duct
modes of amplitude O((kw)−2) which propagate in the passages between adjacent
blades are also generated. These duct modes interact with the trailing edges of the
cascade to generate both downstream radiation and reflected duct modes travelling
back upstream. The reflected duct modes have size O((kw)−3) (see Peake 1992, p. 276,
equations 45 and 46), and will interact with the leading edges of the cascade to
generate more upstream radiation, in excess of that already calculated in (3.16), and
thereby provide a correction to our expression for the Rn. However, this radiation
correction will be no larger than the upstream-travelling duct modes which generated
it, i.e. O((kw)−3), and since our aim is only to calculate the first two terms in the
forward radiation, which are size O((kw)−2) and O((kw)−5/2) respectively, it is clear
that this trailing-edge correction is smaller than the second term in (3.16) by a factor
O((kw)−1/2), and is therefore ignored.
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Figure 3. Plots of the normalized acoustic energy flux ahead of the cascade, E, for varying values
of the inter-blade phase angle σ0 with M∞ = 0.8, s∗/b∗ = 2, d∗/b∗ = 1, AN = 1 and for k = 10
and k = 5. The solid lines are the results from the exact solution, and the dashed lines from the
approximate solution in which the trailing edges are neglected.

In addition to this asymptotic argument, the relatively small effect exerted by
the trailing edges on the forward-radiated noise for high kw can also be confirmed
numerically. An exact prescription for determining the radiation generated ahead of
a cascade of finite-chord flat-plate blades at zero incidence has been given by Peake
(1993), using a pair of coupled Wiener–Hopf problems to determine the duct modes
between adjacent blades and hence the radiation-mode amplitudes. Alternatively, the
radiation ahead of a cascade in which the trailing edges are completely neglected (so
that the chord is taken as semi-infinite) has been predicted by a number of authors
using a rather more elementary application of the Wiener–Hopf technique (details
in Peake & Kerschen 1995a). We compare the predictions of these two theories by
examining the normalized acoustic energy flux E radiated upstream of the cascade.
The quantity

E =

q0∑
n=−r0

(∆2
0k

2w2 − (2nπ − σ′0)2)1/2|Rn|2 (3.20)

is proportional to the time-averaged acoustic energy flux per blade, propagating
upstream across a surface parallel to the front face of the cascade. In figure 3, the
upstream acoustic energy flux E predicted by the exact and the semi-infinite chord
theory is plotted as a function of inter-blade phase angle σ0, for the two cases k = 5
and k = 10, with M∞ = 0.8 so that kw = 6.67 and kw = 13.33 respectively. Very good
agreement between the exact and approximate results is obtained, confirming that
the trailing edges can indeed be neglected when kw is large, with only a small error.
The sharp drop in E observed on all the plots corresponds to an upstream radiation
mode becoming cutoff.
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3.4. Results and discussion

Before presenting some results calculated using the above analysis, we first note
that our asymptotic expression for Rn becomes infinite at certain isolated critical
conditions. From (3.14) it is clear that this happens when the saddle point ζn0s
approaches infinity, which is when σn0 = ±kw cos α0, η

n
0 = ±kw sin α0, or equivalently

when the mode angle is θ(ζn0s) = π + α0, α0 respectively. These are exactly the cut-off
conditions for upstream-propagating modes, whose propagation direction must lie in
the region α0 < θ < π + α0.

The three directivity functions D0(θn,±w cos α0) and D0(θn, 0) in (3.16) may also
become singular. This happens when an upstream-propagating mode approaches cut-
off as above, or when the propagation direction of an upstream-propagating mode
approaches a shadow boundary associated with the field reflected off the blade below
(contributions iii and iv). The propagation direction for the reflected field must lie in
the range π/2 < θ < π − α0, the two limits forming the shadow boundaries for this
field. Specifically, it can be seen from (3.3) that D0(θn, w cos α0) is singular when the
mode angle θ(ζn0s) is equal to either π − α0 or π + α0; the first of these corresponds
to a shadow boundary of the reflected field while the second corresponds to a cut-off
condition. The function D0(θn,−w cos α0) is singular when θ(ζn0s) = α0 corresponding to
the other cut-off condition (the angle θ = 2π−α0 is not of interest since it lies outside
the region for upstream propagation), and D0(θn, 0) is singular when θ(ζn0s) = π/2
corresponding to the other shadow boundary for the reflected field (θ = 3π/2 is also
not of interest since it lies outside the region for upstream propagation). In addition,
the non-uniformities due to the appearance of the two step-function discontinuities
in (3.19) are also related to the the shadow boundaries for the reflected field. We
emphasize, however, that these non-uniformities arise only in isolated conditions for
which the direction of propagation of an upstream propagating mode approaches a
cut-off angle α0 or π + α0, or a shadow boundary angle π/2 or π − α0.

In a previous paper (Peake & Kerschen 1995a) we have derived a uniform asymp-
totic factorization of the generic Wiener–Hopf kernel for the cascade, which remains
valid in the vicinity of all these critical ray directions. However, some additional
simplification of this latter analysis will be necessary in order to allow its extension to
non-zero mean loading, and in this paper we will concentrate on the case in which the
modes are both well cut-on and not too close to either of the critical directions π/2
and π − α0, thus avoiding the non-uniformities described above. The regime covered
in this paper therefore includes a very considerable portion of all possible parameter
values, and so is of considerable practical interest. Note that the interpretation of the
critical ray directions given in the final paragraph on p. 183 of Peake & Kerschen
(1995a) is incorrect.

In figure 4 we demonstrate the accuracy of our asymptotic expansion by comparing
results for the amplitude of the zeroth mode, |R0|, with the exact solution for a cascade
of finite-chord airfoils at zero incidence (the exact solution takes full account of the
trailing edges, and has again been calculated using the prescription described by
Peake 1993). In figure 4(a) we have k = 10, and kw runs from 4.7 at M∞ = 0.4 to
32.9 at M∞ = 0.95, and as can be seen exceedingly good agreement is obtained for
Mach numbers larger than about 0.55. For the conditions considered in figure 4(a),
as M∞ is increased from zero the n = 0 mode becomes cut-on for M∞ > 0.35, and the
propagation direction approaches the shadow boundary θ(ζ0

0s) = π/2 for M ≈ 0.85.
In the close vicinity of these two critical conditions, our asymptotic approximation
breaks down as described above, and these regions have therefore not been plotted.
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Figure 4. Plot of the amplitude of the n = 0 radiation mode as M∞ is varied, calculated from an
exact solution (dashed line) and the asymptotic solution described in §3 (solid line). Here s∗/b∗ = 2,
d∗/b∗ = 1, σ0 = 2π, AN = 1 and (a) k = 10; (b) k = 5.

(As has already been mentioned, such non-uniformities could be handled using the
sort of analysis described in Peake & Kerschen 1995a.) However, away from the non-
uniformities our large-kw expansion is in good agreement with the exact solution.
In figure 4(b) we use the smaller value k = 5 and here we have 4.3 < kw < 15.2
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as M∞ is increased from 0.65 to 0.95, and even for this moderate value of k good
agreement is obtained (here the n = 0 mode becomes cut-on at M∞ ≈ 0.6, explaining
the discrepancy at the lower end of the M∞ range). Finally, it should be emphasized
that the mode index n used here to label our plane waves does not correspond to any
mode number used to label the modes in a cylindrical duct (although the azimuthal
mode number of a duct mode can of course be related to the number of blades in the
blade row and to the inter-blade phase angle in our cascade); the connection between
our two-dimensional cascade results and the acoustic field in a duct is described
briefly in §6.

We have therefore established an accurate approximation for the case of zero blade
incidence, in which the point of generation and subsequent propagation of each
radiation component is explicitly identified. We can now go on to incorporate the
non-uniform mean-flow effects arising from non-zero mean loading, and this will be
described in the next two sections.

4. Steady flow for non-zero mean loading
In order to analyse the distortion of the incident gust and its subsequent interaction

with the cascade, we first need to find the steady base flow through the cascade.
Since δ � 1, the steady-flow potential satisfies the usual linearized subsonic small-
disturbance equation, and we make the Prandtl–Glauert transformation

x∗, y∗ → φ0, ψ0, (4.1)

and thereby convert the steady compressible flow through the cascade in physical
space into an equivalent incompressible flow through a modified cascade in Prandtl–
Glauert space. The Prandtl–Glauert transformation contracts distances perpendicular
to the direction of the uniform base flow (here taken to be the upstream flow) by
a factor β∞, so that in the Prandtl–Glauert space the distance ∆pg between leading
edges is

∆pg = ∆∗
(
cos2(α∗ − δ) + β2

∞ sin2(α∗ − δ)
)1/2

/b∗, (4.2)

where non-dimensionalization by the blade semi-chord has also been incorporated in
the transformation. In Prandtl–Glauert space, the front face of the cascade makes an
angle

α = tan−1[β∞ tan(α∗ − δ)] (4.3)

with respect to the positive φ0-direction. Since we are only concerned with determining
the steady flow to O(δ), we make the usual approximation of applying the normal-
velocity boundary conditions not on the actual blade surfaces but instead on line
segments parallel to the uniform base flow,

ψ0 = n∆pg sin α, n∆pg cos α < φ0 < n∆pg cos α+ 2, n = 0,±1,±2 . . . . (4.4)

Expanding the complex potential as a perturbation series in δ, we have

ζ ≡ φ+ iψ = ζ0 + δF(ζ0) + O(δ2) (4.5)

where ζ0 = φ0 + iψ0 = (x∗ + iβ∞y∗)/b∗ is the (complex) independent variable in the
Prandtl–Glauert space. Setting F = φ1 + iψ1, the boundary condition on the blade
surfaces then takes the form

∂φ1

∂ψ0

= −∂ψ1

∂φ0

= − 1

β∞
(4.6)
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on the line segments specified above. Equation (4.6) can be integrated to yield a
simple expression for Im(F) on the blade surfaces. Note that the application of the
Prandtl–Glauert transformation has introduced a factor β−1

∞ in the normal-velocity
boundary condition, showing that the mean-flow disturbance for a blade deflection
angle δ in the compressible stream corresponds to an equivalent incompressible flow
for a blade deflection angle δ/β∞. (The effective angle of attack δ/β∞ differs from the
distortion of the actual blade geometry under the Prandtl–Glauert transformation.)
The (complex) disturbance velocity F ′(ζ0) is required to vanish at upstream infinity,
and the Kutta condition is applied at the trailing edges. In §5, it will prove convenient
that (4.6) provides a simple expression for ψ1 on the blade surfaces, independent of
the details of the cascade solution.

Thus, the determination of the steady flow has been reduced to the solution of an
incompressible flow problem, which can be obtained using the theory of conformal
mappings. Robinson & Laurmann (1956) and Thwaites (1960) describe the mapping
of a circle onto our cascade of flat plates, which then provides an analytical, albeit
implicit, expression for the complex potential F(ζ0), and details are given in Appendix
A. The quantity required for the analysis of the unsteady flow according to the
formulation in §2 is F(ζ), requiring an inversion of (4.5), but since we neglect terms
of O(δ2), F(ζ0) can be replaced by F(ζ) to the order of our analysis. In order to fix
the arbitrary constant present in F(ζ), we suppose that F vanishes at the leading edge
of blade 0, i.e. F(0) = 0. It then follows from the periodicity of the flow that F = 0
at each leading edge. The mean-flow perturbation decays exponentially with distance
upstream of the cascade, and the complex potential F approaches a constant, F(−∞),
as ζ →∞ in the upstream region.

The cascade in physical space is mapped onto a cascade in φ, ψ space, with the
blades being mapped onto lines parallel to the φ-axis. This new cascade has a stagger
angle α and adjacent leading-edge separation ∆ = ∆pg (see figure 5). The leading edge
of blade n has position n∆ exp(iα), and the leading edge and forward stagnation point
can be taken as coincident, since their spacing is O(δ2). It should be noted that the
trailing edge of each blade is mapped onto two points in φ, ψ space, thanks to the
non-zero circulation and consequent jump in the mean-flow velocity potential across
each wake, but since, as has already been argued, the trailing edges have no effect at
the asymptotic order considered, this difficulty is of no importance here.

It follows from the expression (2.6) for the gust that the inter-blade phase angle,
σ, can be found in terms of the incident-gust wavenumbers as σ = kd + kkns, where
d = ∆ cos α, s = ∆ sin α. For a mean flow which is an O(δ) perturbation about a
uniform flow, Kerschen & Balsa (1981) have shown that the drift function, g(φ, ψ),
representing the cumulative distortion of the vorticity and entropy gusts by the
non-uniform steady flow as they are convected from upstream infinity, is given by

g(φ, ψ) = −2δRe[F(ζ)− F(−∞)] + O(δ2). (4.7)

The drift experienced by the incident gust in travelling from infinity to the leading
edge of each blade, denoted δgl in order to expose the scaling on the small parameter
δ, is then given by

δgl = 2δRe[F(−∞)], (4.8)

and an expression for F(−∞) follows from the conformal mapping. We note that
δgl is the same for each leading edge, as might be expected given the periodicity of
the steady flow. For an isolated flat-plate airfoil at non-zero angle of attack the drift
vanishes to leading order as can be seen by induced velocity arguments (see Myers &
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Figure 5. The image of the cascade in φ, ψ space.

Kerschen 1995), and this is also true for a cascade without stagger, but for a staggered
cascade it turns out that δgl 6= 0.

The form of the steady flow near each leading edge will be required for analysis of
the unsteady flow, and in Appendix B it is shown that

F ′(ζ) ∼ δeff

β∞

(
2

ζ − n∆ exp(iα)

)1/2

as ζ → n∆ exp(iα), (4.9)

where the parameter δeff is independent of n and has been determined from the
conformal mapping. This square-root singularity is characteristic of the local mean-
flow perturbation in the vicinity of each leading edge, and δeff is simply the effective
incidence angle – i.e. (4.9) describes the flow near the leading edge of an isolated
flat-plate airfoil inclined at an angle δeff to the oncoming stream. Since the cascade
will act to turn the upstream flow so as to be aligned approximately along the blade
chord, we expect that δeff < δ, and this indeed turns out to be the case. This point is
particularly significant, because it is essentially δeff which is the small parameter in
our subsequent analysis of the sound-generation problem, and the range of validity
of the asymptotic expansion is therefore likely to be larger than might at first be
supposed. In what follows we write C ≡ δeff/δ.

5. Unsteady flow for non-zero mean loading
5.1. Local leading-edge analysis

Myers & Kerschen (1995) demonstrate that the interaction between a high-frequency
convected gust and an isolated airfoil can be treated using the method of matched
asymptotic expansions, with an inner region around the leading edge scaling on
the gust wavelength (so of size O(k−1)), and an outer region comprising the rest of
space. An additional inner region is present around the trailing edge, together with a
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transition region corresponding to the blade wake, but since we are only concerned
with the forward-radiated noise here, these additional features can be neglected. In
the outer region the mean flow varies slowly on the wavelength scale, and the incident
gust convects along the mean-flow streamlines and is distorted according to (2.6). In
the inner region around the leading edge, the lengthscale of the steady flow becomes
comparable with the gust wavelength, and a complicated interaction between the
steady and unsteady flows must occur, and sound is generated.

For our cascade problem, the local leading-edge analysis for each blade must be
entirely equivalent to Myers & Kerschen’s isolated-blade work, with the one proviso
that the local mean-flow perturbation in the leading-edge region is given by (4.9),
in which the parameter δ, which would have been present for the isolated airfoil, is
replaced by δeff thanks to the turning effect of the cascade on the upstream flow. We
therefore define sets of inner coordinates around each leading edge by

Φn = (φ− n∆ cos α)k, Ψn = (ψ − n∆ sin α)k, (5.1)

and write the modified unsteady velocity potential in the inner region around blade
n in the form

Hn(Φn,Ψn) =
1

k
[H0 + Cδk1/2(H1 +H2 +H3) + O(δ2k, δ, 1/k)]. (5.2)

Here the factor C has been introduced to account for the effective incidence angle at
the leading edge. Substituting (5.2) into (2.11) and (2.13) and expanding for large k
and small δ, the equations governing the local functions Hn are found to be identical
to those appearing in Myers & Kerschen (1995), and the solutions developed there
can be used directly. We note that the term H0 is just the inner limit of the unsteady
velocity potential for an airfoil at zero incidence, that H1 accounts for the change in
boundary conditions on the blade surface due to the distortion of the vortical gust,
H2 accounts for the quadrupole sources corresponding to Reynolds-stress fluctuations
as well as distortion of the entropy gust, and H3 accounts for the interaction between
the zeroth-order sound field and the local mean flow.

Myers & Kerschen (1995) have shown that this inner solution matches onto a
solution in the outer region which contains both convected and acoustical components,
but since we are only interested in calculating the sound we consider here just the
latter, which is shown to have modified velocity potential h of the form

D(θn) exp(ikwrn + ikδP (rn, θn) + inσ′ + ikδgl)

k3/2r
1/2
n

, (5.3)

where rn and θn are polar coordinates relative to the nth leading edge in φ, ψ space.
The directivity D(θ) is given by

D(θ) =
AN

β∞
D0(θ,−1/β2

∞) + Cδk1/2 [D1(θ) + D2(θ) + D3(θ)] + O(δ2k, δ, 1/k), (5.4)

and the complicated algebraic expressions for D1,2,3(θ) are given by Myers & Kerschen
(1995, equations 3.11b, 3.15b–e, 3.26c) and in Appendix C of this paper for complete-
ness. The field spreads cylindrically from the leading edge, with a phase distortion
due to the non-uniform mean flow given by the function

P (rn, θn) = V (θn)Q(rn, θn), (5.5)
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where

V (θ) = −β2
∞w +

(γ + 1)M4
∞

2β2
∞w

(
1

β2
∞
− w cos θ

)2

, (5.6)

γ is the ratio of specific heats and

Q(rn, θn) ≡
∫ rn

0

q(r′n, θn)dr
′
n = Re{exp(−iθn)F(rn exp(iθn))}. (5.7)

The last step in (5.7) has been completed by noting that q is the real part of an
analytic function. The modified inter-blade phase angle σ′ is defined in (2.16) and
(2.18). The final term in the phase in (5.3) arises from the distortion of the incident
gust as it convects to the leading edge. By comparing (3.2) and (5.3), the effect of
non-zero mean loading on the direct field (contribution (i) of §3) becomes clear,
and we note in particular how the directivity is modified by an O(Cδk1/2) amount,
which although formally small will be significant for parameter values of practical
interest. We also note, however, that the turning effect of the cascade on the upstream
flow means that C < 1, so that the effects of these additional sound sources in
the leading-edge region will typically be somewhat smaller for a cascade than for
an isolated airfoil. Even more significantly, the acoustic phase is modified by an
O(kδ) amount, which is O(1) in our preferred limit, and given the complicated phase
interference effects between the different scattered radiation components which make
up the forward-radiated noise, one would expect this phase change to have a very
significant effect.

5.2. Forward radiation

The high-frequency cascade solution for non-zero δ is now developed following the
same approach as in §3. In the high-frequency limit, the forward radiation consists of
the four components illustrated in figure 2: (i) the direct field from each leading edge,
(ii) the scattered field generated by the subsequent impingement of the direct field of
a given blade on the leading edges of the other blades, (iii) the reflection of the direct
field of a given leading edge by the blade below and its subsequent rescattering by
the same leading edge, and (iv) the reflection of the direct field of a given blade off
the blade below and its subsequent propagation to the far field.

The modifications to the direct field of a given blade n were discussed in the
previous subsection. Here, we consider the reflection and scattering of this direct field
by the other blades of the cascade. The non-uniform mean flow leads to O(δk1/2)
changes in the amplitude of the direct field (5.3) and O(δk) changes to the phase.
It is seen, however, that the orientation of a surface of constant phase is modified
only by an O(δ) amount. In this paper we are only concerned with the O(δk1/2)
and O(δk) corrections to the radiation directivity and phase, so that in considering
the reflection and scattering of the direct field of a given blade by other blades, the
local orientations of the incident and reflected rays can be approximated by their
values for the case δ = 0. Also, since the blade surfaces are flat, the Cauchy Riemann
conditions show that ∂q/∂ψ vanishes on the blade surfaces, so that (2.13) reduces to
∂h/∂ψ = 0 for the acoustic component of the field. Thus, the construction of the ray
paths and image representations for the scattering and reflection processes when δ is
non-zero is exactly the same as for the δ = 0 case in §3, but the amplitude along a
given ray path is modified due to the O(δk1/2) amplitude correction to the direct field,
and the phase along the ray is modified due to the O(δk) influence of the mean-flow
perturbation.
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The O(kδ) corrections to the phases of the four radiation components are calculated
separately.

(i) The direct field generated at the leading edge of blade n is now given by (5.3).
The phase distortion (relative to the case δ = 0) suffered by this radiation as it
propagates from the leading edge of blade n directly to the far field is found to be

kδP (∞, θn) ≡ kδp1 = kδV (θn)Re{exp(−iθn)F(−∞)}. (5.8)

Note that, in the upstream direction α < θn < π + α, the mean-flow disturbance
potential F(rn exp(iθn)) approaches a constant value, F(−∞), which is independent of
θn as rn →∞.

(ii) The direct field from the leading edge of blade n interacts with all the other
leading edges in exactly the same way as described in §3. The phase distortion
experienced by the direct field from blade n as it travels to the leading edge of blade
n + m is kδP (m∆, α) for m > 0 and kδP (−m∆, π + α) for m < 0, and both these
quantities are identically zero thanks to the fact that F vanishes at each leading
edge. (The fact that F vanishes at each leading edge leads to Q(∆, α) = 0 from (5.7),
and this is a consequence of mass conservation; the total mass flux into the cascade
between each blade must be the same as that between adjacent stagnation streamlines
at upstream infinity, so that the perturbation mass flux at the cascade, Q(∆, α), must
be zero.)

(iii) The radiation emitted in the negative ψ-direction by the leading edge of blade
n is reflected by blade n− 1 and then rescattered by the leading edge of blade n, and
this process of reflection and rescattering continues indefinitely. The repeated phase
distortions which these waves experience in this process are calculated as follows.
First, generalizing the result (5.5), the phase distortion due to non-uniform mean-flow
effects in the propagation of an acoustic wave from point ζa = φa + iψa to point
ζb = φb + iψb is

kδP1(ζb, ζa) = kδV (θ)Re{exp(−iθ)(F(ζb)− F(ζa))}, (5.9)

where θ is the angle between the line segment from ζa to ζb and the positive φ-
direction. The phase distortion in propagating from the leading edge of blade n to the
point of reflection A on blade n− 1 (see figure 5) is then kδP1(−is, 0) = kδP (s, 3π/2),
while the phase distortion on the return path to the leading edge of blade n is given
by kδP1(0,−is). (Here the locations ζa and ζb have been expressed in coordinates
referenced to the leading edge of blade n.) Combining these results, the total phase
distortion which occurs in one cycle around the path from the leading edge of blade
n to point A and back is

kδp2 = −kδ2V (π/2)Im{F(−is)}, (5.10)

where we have used the result that V (θ) = V (2π − θ). As noted in §4, the value of
Im{F} on the blade surfaces is easily determined from the boundary condition (4.6)
which the mean-flow perturbation satisfies. The point A on blade n− 1 is a distance
d from the leading edge, so that Im{F(−is)} = d/β∞ and

p2 = −2V (π/2)∆ cos(α)/β∞. (5.11)

(iv) The radiation emitted from the leading edge of blade n in directions π/2 <
θn < π − α is reflected by blade n − 1 before reaching the far field, and the phase
distortion associated with this can be calculated in very much the same way as
described in (iii) above. The phase distortion in propagating from the leading edge
of blade n to point B on the upper surface of blade n − 1 is given by kδP1(ζB, 0),
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while the phase distortion on the reflected path extending out to the far field is
kδP1(ζ∞, ζB). Combining these two contributions, the total phase distortion along the
path reflecting off point B and extending to the far field is kδ(p1 + p3), where

p3 = −2V (θn) sin θnIm{F(ζB)}
= −2V (θn)∆ sin(α+ θn)/β∞ (5.12)

and the second step of (5.12) has been completed using the fact that the distance
from the leading edge of blade n − 1 to point B is s(cot α + cot θn). We notice that
when θn + α = π (corresponding to the reflection point B lying exactly at the leading
edge of blade n− 1) then p3 = 0, which is entirely to be expected since from (ii) the
distortion associated with propagating between leading edges is exactly zero.

The total radiation falling on the leading edge of blade n is therefore found by
adding together contributions (ii) and (iii) in exactly the same way as before. The
corresponding velocity potential is then just given by a modified version of (3.4), in
which all the quantities with suffix 0 are replaced by the corresponding quantity for
δ 6= 0, and in particular B1,2,3

0 → B1,2,3, with

B1 =

∞∑
m=1

{
D(π + α) exp(ikwm∆+ imσ′ + ikδgl)

m3/2∆1/2

}

B2 =

∞∑
m=1

{
D(α) exp(ikwm∆− imσ′ + ikδgl)

m3/2∆1/2

}

B3 =

∞∑
m=1

{
D(3π/2) exp(2ikwms+ ikδmp2 + ikδgl)

m3/2(2s)1/2

}
.


(5.13)

Note the inclusion of the phase factor exp(ikδmp2) in the last term to account for the
refractive effects in the multiple reflection associated with contribution (iii).

When this radiation interacts with the leading edge of blade n, the resulting
upstream radiation can be thought of as being composed of two components. One
component is equal to the upstream radiation produced in the scattering by an edge in
uniform flow (i.e. as if δ = 0), with a velocity potential of size O(k−2); and the second
component is a correction to account for the sound generated by the interaction of
the incident radiation and the local mean-flow disturbance in the leading-edge region,
with a velocity potential of size O(k−3/2δ). This correction is smaller than either of
the first two terms in our expansion of the directivity of the forward radiation, and
the effects of δ 6= 0 can therefore be neglected in the local rescattering process. It
follows that the unsteady velocity potential upstream of the cascade due to the direct
field of blade n and the rescattering at the leading edge of blade n, but excluding
contribution (iv) for the moment, can be found by modification of (3.6) in the form

fn(φn, ψn) =
exp(ikwrn + ikδp1 + inσ′)

k3/2r
1/2
n

{
D(θn) exp(ikδgl)−

iB1w sin α

k1/2
D0(θn, w cos α)

+
iwB2 sin α

k1/2
D0(θn,−w cos α) +

iwB3

k1/2
D0(θn, 0)

}
. (5.14)

Summing over the blade index n and including the reflected contribution (iv), we find
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that the total unsteady velocity potential ahead of the cascade is

h(φ, ψ) =

∞∑
n=−∞

[
fn(φn, ψn)+fn(φn,−ψn−2s) exp(ikδp3) {H(θn−π/2)−H(θn−π+α)}

]
.

(5.15)

Note that the use of the image-source construction here has already been fully justified
at the beginning of §5.2.

Finally, the summation over the blade index n in (5.15) is converted to a summation
over the upstream mode index by the same method as utilized in §3.2. By suitable
modification of (3.18), we find that the modified unsteady velocity potential takes the
form

q∑
n=−r

Rn(θ(ζns )) exp(−iσnφ− iηnψ) (5.16)

far upstream, where

Rn(θ) = Rn(θ) +Rn(2π − θ) exp(−2isηn + ikδp3){H(θ − π/2)−H(θ − π + α)} (5.17)

and

Rn(θ) =
exp(iπ/4)(2π)1/2w

1
2 exp(ikδp1)

k
[
∆2k2w2 − (2nπ − σ′)2

]1/2 [
D (θ) exp(ikδgl)−

iB1w sin α

k1/2
D0 (θ, w cos α)

+
iB2w sin α

k1/2
D0 (θ,−w cos α) +

iB3w

k1/2
D0 (θ, 0)

]
. (5.18)

We note that since D(θ) 6= D(2π − θ), it is not possible to simplify (5.18) in the same
way as was possible for (3.19) when δ = 0. The new saddle point ζns and the modal
wavenumbers σn and ηn are obtained simply by replacing σ′0, ∆0, α0 by σ′, ∆, α in (3.14)
and (3.17) respectively; for instance,

σn = [(2nπ − σ′) cos α+ sin α(∆2k2w2 − (2nπ − σ′)2)1/2]/∆,

ηn = [(2nπ − σ′) sin α− cos α(∆2k2w2 − (2nπ − σ′)2)1/2]/∆,

}
(5.19)

which are now cut-on for −r 6 n 6 q. It is clear that mean loading modifies the modal
amplitudes, but the variation of the wavenumbers (5.19) as δ is increased depends on
the precise way in which the cascade geometry is adjusted. If one considers precisely
the same cascade throughout (i.e. keep the stagger α∗ fixed) and then rotates the whole
cascade clockwise about the midpoint of blade 0 (so that the angle to the upstream
flow direction, δ, is increased) then it is certainly the case that the wavenumbers, and
therefore the number which are cut-on, change. In fact, ∆ increases and α decreases if
δ is increased with α∗ fixed, but the variation of σ′ is more complicated and depends
on the relative size of α and the gust transverse wavnumber kn. Alternatively, however,
if one keeps the line of leading edges fixed and then increases the angle between the
blades and this fixed line, so that both δ and α∗ are increased but the difference α∗ −δ
remains the same, then it follows that the wavenumbers are unchanged from their
unloaded values, since it is only α∗ −δ, and not α∗ or δ individually, which appears in
(5.19) (see (4.2) and (4.3)). We also note that it is the modified inter-blade phase angle
σ′, and not the gust inter-blade phase angle σ, which appears in (5.19), and this is due
to the presence of the non-zero uniform flow upstream, and arises mathematically
from the Miles transformation (2.10). The difference between σ and σ′ can therefore
be attributed to a Doppler effect (actually σ′ − σ = kM2

∞d/β
2
∞), and we note that this
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again depends on the angle α∗ − δ, and therefore does not change from its unloaded
value as δ is increased with the line of leading edges held fixed.

Equation (5.18) becomes singular, and is therefore invalid, at certain critical con-
ditions, in exactly the same way as was (3.16) for δ = 0. Just as before, these
non-uniformities occur when σn = ±kw cos α, corresponding to the cut-on conditions
of the mode n and the shadow-boundary non-uniformity at θ = π− α, and also when
σn = 0 (for which just the last term in (5.18) is singular, corresponding to coincidence
with the shadow-boundary non-uniformity in our expression for D0(θ, 0)). Finally, by
considering the behaviour of φ+iψ at upstream infinity it follows that we can rewrite
equation (5.16) in terms of the physical coordinates, to give the upstream unsteady
velocity potential as

q∑
n=−r

Rn(θ(ζns )) exp(−iσnRe[δF(−∞)]− iηnIm[δF(−∞)]) exp
(
−iσnx∗/b∗ − iηnβ∞y∗/b∗

)
.

(5.20)

5.3. Sample results

Here we consider for simplicity just two-dimensional purely vortical gusts, so that
Az = kz = B = 0. In figure 6 we demonstrate the large effect that even a relatively
modest level of mean loading can have on the forward-radiated noise, by comparing
the amplitude of the n = 1 mode for zero mean loading (δ = 0) with results
calculated using the above asymptotic theory for δ = 0.25. For the cascade considered
in figure 6, the factor C relating δ and δeff is C = 0.41 and F(−∞) = 0.15 + i0.61;
the small parameter Cδk1/2 in (5.4) therefore ranges over 0.25 < Cδk1/2 < 0.46.
As can be seen, the mean loading leads to significant change in |R1|, shifting the
locations of the maxima and minima and increasing the amplitude by more than a
factor 2. The sharp local turning points observed on both curves are characteristic
of cascade noise, and appear as successively higher-order modes become cut-on for
increasing k. The mean loading has been introduced by rotating the cascade by
an angle δ about the leading edge of blade 0 while holding the physical stagger
angle α∗ constant, and therefore the mean loading has caused a shift in the cut-
on frequencies. We also note that while the amplitude of the n = 1 upstream
mode for the unloaded cascade becomes zero for various values of k, the mode
amplitude for the loaded cascade remains strictly positive. This can be explained
by noting from (3.19) that for δ = 0 the zeros of |R1| seen in figure 6 occur when
exp(−2is0η

1
0) = 1; in this situation the source at each leading edge and its image

in the lower blade produce radiation which, in the propagation direction associated
with the n = 1 mode, is exactly out of phase and interferes destructively leading
to a zero amplitude for this mode. When δ 6= 0, however, this total destructive
interference no longers occurs for these parameter values, because the radiation from
the source and its image experience different phase distortions as they propagate
to the far field. In addition, when mean loading is introduced, D(θ) is no longer
antisymmetric (D(θ) 6= −D(2π − θ)), ruling out the possibility of total destructive
interference at other angles. In figure 7, we plot the amplitude |R1| of the n = 1
mode against δ for the case k = 10, and as would be expected the effects of mean
loading become increasingly strong as δ is increased from zero. For the parameter
values chosen, we find that σ1 ≈ 0 for δ ≈ 0.13, so that our asymptotic approximation
becomes invalid, and a small neighbourhood in the vicinity of this point is therefore
excluded.

There are essentially three different effects which contribute to the substantial dif-
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Figure 6. Plot of the amplitude |R1| of the n = 1 radiation mode for varying reduced frequency k.
Here, s∗/b∗ = 2, d∗/b∗ = 1, M∞ = 0.7, AN = 1, At = Az = kz = 0 and B = 0, and δ = 0.25 (solid
line), δ = 0 (dashed line).
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Figure 7. Plot of the amplitude |R1| of the n = 1 radiation mode as a function of angle of attack,
δ (solid line). Here k = 10, with other conditions as in figure 6. The dashed line represents the total
radiation minus the component generated by the action of the mean-loading related sources at each
leading edge.
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ferences between the values of |R1| for loaded and unloaded cascades which were illus-
trated in figures 6 and 7. First, the effective cascade stagger angle α and leading-edge
separation ∆ are functions of the inclination of the front face of the cascade to the on-
coming stream, and therefore depend on the loading (in fact, α and ∆ differ from their
δ = 0 values by O(δ)). We can estimate the effect of this modification by considering
the substitution α0 → α, ∆0 → ∆ in (3.15), from which it becomes clear that the phases
of each of the various radiation components change by an O(kδ) amount, while the
amplitudes are changed by a small amount of relative size O(δ). Second, the various ra-
diation components experience a phase distortion of size O(δk) in propagating through
the non-uniform flow. Third, extra noise is generated at each leading edge by the addi-
tional source mechanisms associated with the local mean-flow gradients (i.e. the second
set of terms in (5.4)), and the amplitude of this radiation is smaller than that produced
by the force-dipole distribution of the unloaded cascade (i.e. the first term in (5.4)) by
a factor of size O(δk1/2). It is clear that the first and second effects will certainly make
a significant contribution, since the associated phase changes are O(1) in our preferred
limit, but it might be thought that the third effect is much less important, since it only
produces radiation of formally small relative amplitude O(δk1/2). For typical values of
k and δ, however, these additional source mechanisms make a significant contribution,
and this is demonstrated in figure 7, where we present a plot of the total upstream
radiation minus the contribution from the mean-loading-related leading-edge sources
(which is completed in our analysis by simply setting C = 0). The discrepancy between
the two curves is certainly non-trivial for realistic values of δ greater than about 0.15,
illustrating the importance of the mean-loading-related sources in the vicinity of the
leading edges which were originally analysed by Myers & Kerschen (1995).

6. Concluding remarks
In this paper we have described the derivation of a consistent asymptotic approx-

imation for the forward radiation generated by the interaction between convected
disturbances and a cascade of loaded flat-plate airfoils. At the high frequencies con-
sidered, the noise is generated in small regions around the blade leading edges, and is
then diffracted by the leading edges of all the other blades in the cascade, reflected by
the adjacent blades, and refracted as it propagates through the non-uniform flow. In
physical terms, the effects of mean loading are essentially two-fold. First, the mean-flow
distortion leads to additional sound sources at each leading edge of relative amplitude
O(δk1/2), which will be significant for typical values of k and δ found in practice.
Second, O(1) phase changes are induced in the various radiation components as
they propagate through the non-uniform mean flow, and given the strong interference
effects present in cascade noise, this modification also gives rise to an important effect.

Once the calculations described in this paper have been completed, it is worth
mentioning here how they can be used directly in a noise prediction scheme. One
approach will be to use our cascade results to calculate the radiation modes at each
radius along the span, as is done in strip theory, and then to use this information as
initial data in ray tracing to calculate the acoustic field in the cylindrical duct ahead
of the blade row. We note that the ray description of cylindrical duct modes given
by Chapman (1994) will be particularly useful in this regard. It is significant here
that our theory has been developed for the general case of three-dimensional incident
gusts, and hence can be used to calculate the generation of acoustic waves with
non-zero radial wavenumber. A second possibility is to use the approach described
in this paper to calculate the blade lift (the precise analysis will be described in a
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later paper) which can then be used as the source term in a rotating-source radiation
integral for the resulting noise.

Work is now progressing on incorporating the effects of blade camber and thickness
into calculating the unsteady lift distribution on the blades, and into developing
expansions valid close to the non-uniformities described in §3, using the same approach
as has been employed here. When this is complete, we believe that our analysis will
provide a comprehensive prediction scheme for unsteady cascade flow, as well as
providing very considerable insight into the underlying physics of the problem.

The authors gratefully acknowledge the financial support provided by the Royal
Society and the Nuffield Foundation (N.P.) and NASA under grant NAG3-1442
(E.J.K.), and the assistance of Ingmar Evers in obtaining certain numerical results.

Appendix A
In this Appendix we describe the conformal mapping which is used to determine the

steady flow through the cascade. This result is described more fully by Robinson &
Laurmann (1956, p. 149ff), but we include it here in terms of the notation used in this
paper for completeness. In the ζ0 (Prandtl–Glauert)-plane the flow is incompressible
and the cascade geometry is as shown in figure 1, but with the blades inclined at an
angle δ/β∞ to the upstream mean flow, stagger angle αpg = α + δ/β∞, leading-edge
spacing ∆pg and chord length 2. A conformal mapping of a circle of radius a in the
η -plane onto this cascade in the ζ0-plane is given by

exp(iδ/β∞)ζ0 − 1 =
∆pg

2π

{
exp(+iαpg − iπ/2) log

(
b+ η

b− η

)
+ exp(−iαpg + iπ/2) log

(
η + a2/b

η − a2/b

)}
; (A 1)

note the origin and orientation of the axes differs from those used in Robinson &
Laurmann (1956). The ratio b/a (> 1) is found as the solution of an implicit equation
derived by noting that the circle is mapped onto blades of chord length 2; this
equation turns out to be

2 =
2∆pg
π

{
sin αpg log

(
(cosh2 log(b/a)− cos2 αpg)

1/2 + sin αpg
sinh[log(b/a)]

)
+ cos αpg tan−1

(
cos αpg

[cosh2 log(b/a)− cos2 αpg]1/2

)}
(A 2)

(note the typographical error in Robinson & Laurmann, p. 151 equation 2.11,14), and
can be solved numerically for b/a in a straightforward manner. The non-dimensional
perturbation potential, δF(ζ0), for the incompressible flow through the cascade in the
ζ0-plane can then be written down as

δF(ζ0) =
Um∆pg

2πU∞

{
exp(−iιm) log

(
b+ η

b− η

)
+ exp(iιm) log

(
η + a2/b

η − a2/b

)}
− iΓ

4π
log

{
η2 − a4/b2

η2 − b2

}
− ∆pg exp(−iδ/β∞)

2π

{
exp(+iαpg − iπ/2) log

(
b+ η

b− η

)
+ exp(−iαpg + iπ/2) log

(
η + a2/b

η − a2/b

)}
+ C, (A 3)
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where the arbitrary constant C is chosen so that δF vanishes at ζ0 = 0, Γ is
the circulation, Um is the modulus of the average of the uniform flow velocities far
upstream and far downstream of the cascade, and ιm is the angle between this average
velocity and the normal to the front face of the cascade in Prandtl–Glauert space. The
extra factor δ in the definition of the perturbation potential will prove convenient in
subsequent asymptotic analysis; by analogy with the flow round an isolated blade, it
is easy to see that δF = O(δ) for δ � 1. It now follows that

tan ιm = (tan ι1 + tan ι2)/2, (A 4)

where ι1,2 are the angles between the upstream and downstream flows and the front
face of the cascade in Prandtl–Glauert space (see figure 1), and this downstream angle
is found from the relation

tan ι2 =
Q tan ι1 + 2 cot αpg

Q+ 2
, (A 5)

where

Q =
(cosh2(log(b/a))− cos2 αpg)

1/2

sin αpg
− 1. (A 6)

The mean velocity Um can be determined simply from mass conservation, and satisfies

Um cos ιm = U∞ cos ι1. (A 7)

We are now able to calculate the circulation, using

Γ =
2∆pgUm cos(ιm + αpg)

[cosh2(log(b/a))− cos2 αpg]1/2
, (A 8)

and the steady incompressible flow through the cascade in the ζ0-plane is thereby
completely specified (typically Γ < 0).

Finally, we note that the point η = −b maps onto the point at upstream infinity in
the ζ0-plane, and the points ηl,t = a exp(iθl,t) map onto the leading edge and trailing
edge, where θl,t are solutions of

tan θ = tanh[log(b/a)] cot αpg, (A 9)

with θl > π and θt = θl − π. The upper and lower surfaces of the blade are then
obtained by moving along the circle |η| = a from a exp(iθl) towards a exp(iθt) in the
clockwise and anticlockwise directions respectively. Since the factor log(η2− a4/b2) in
the circulation term in (A 3) is multi-valued as one moves along the circle |η| = a, the
complex potential at the trailing edge takes two values, depending on whether one
has approached it along either the upper or the lower blade surface. In fact, it is easy
to see from (A 3) that the imaginary parts of the complex potentials at the trailing
edge are equal, but that the real part corresponding to the upper surface is greater
than that corresponding to the lower surface by −Γ ; this is entirely to be expected,
since the flow must accelerate over the upper (suction) surface of each blade.

The quantities C and F(−∞), which are required for our acoustic calculations, can
now easily be determined.

Appendix B
In this Appendix we use the conformal mapping stated above to analyse the form

of the steady flow in the vicinity of the blade leading edges. We note first that close
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to the nth leading edge ζ0 = n∆pg exp(iα) we have

ζ0(η) ≈ n∆pg exp(iα) + 1
2
(η − ηl)2 d2ζ0

dη2
η=ηl

(B 1)

where the point η = ηl maps onto the leading edges, and where we have used the fact
that dζ0/dη = 0 at the blade edges. We now use

dF

dζ0

=
dF

dη

(
dζ0

dη

)−1

, (B 2)

and it follows that

dF

dζ0

≈
{

dF/dη

2
[
d2ζ0/dη2

]1/2
}
η=ηl

(
2

ζ0 − n∆pg exp(iα)

)1/2

. (B 3)

The quantity in curly brackets is the effective incidence angle, δeff/β∞, at each leading
edge, and the various quantities in (B 3) can easily be evaluated from Appendix A.

Appendix C

In this Appendix we present, for completeness, the expressions for the leading-edge
directivity function, D(θ), derived by Myers & Kerschen (1995). From (5.4) we see that
D(θ) is written as a linear combination of four functions D0(θ,−1/β2

∞) and D1−3(θ).
An expression for D0 is already given in this paper in (3.3), and we merely quote the
remaining results as follows:

D1(θ) =
2iANβ

−2
∞

w1/2(β−2
∞ − w cos θ)3/2

. (C 1)

D2(θ) = D2p(θ) + D2c(θ), (C 2)

where

D2p(θ) =
−i(β−2

∞ − w cos θ)f1(−w cos θ) + knf2(−w cos θ)

4(β−4
∞ + k2

n)[2w(β−2
∞ − w cos θ)]1/2(λ1 + w cos θ)(λ2 + w cos θ)

, (C 3)

D2c(θ) = −
[
4(λ1 − λ2)(iknC4 + iβ−2

∞ C3) +
(λ1 + w)1/2f2(λ1)

(λ1 + β−2
∞ )1/2(λ1 + w cos θ)

− (λ2 + β−2
∞ )f2(λ2) + iknf1(λ2)

[(λ2 − w)(λ2 + β−2
∞
′
)]1/2(λ2 + w cos θ)

]
cos 1

2
θ

4(λ1 − λ2)(β−4
∞ + k2

n)
, (C 4)

the constants C1−4 are given by

C1 = i23/2

(
A∗t
β3
∞
− knAN

)
, C2 = i23/2

(
knA

∗
t

β∞
+ β−2

∞ AN

)
,

C3 = −
√

2A∗tM
2
∞

β3
∞

, C4 = −
√

2AnM
2
∞

β2
∞

,

 (C 5)
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the functions f1,2(λ) are defined by

f1(λ) = [iC2 − 2C4(λ+ β−2
∞ )](−β−4

∞ + k2
n − w2 − 2β−2

∞ λ)

+[C1 + 2iC3(λ+ β−2
∞ )]2ikn(λ+ β−2

∞ ),

f2(λ) = [iC2 − 2C4(λ+ β−2
∞ )]2ikn(λ+ β−2

∞ )

+[C1 + 2iC3(λ+ β−2
∞ )](−β−4

∞ + k2
n − w2 − 2β−2

∞ λ),

 (C 6)

and

λ1,2 = −β
−2
∞
2

[
β−4
∞ + k2

n + w2

β−4
∞ + k2

n

]
± ikn

2

[
β−4
∞ + k2

n − w2

β−4
∞ + k2

n

]
, (C 7)

and it should be noted that the square roots in the above expressions are to be
evaluated by introducing branch cuts joining −β−2

∞ and −w to infinity through the

lower half-plane, and joining −β−2
∞
′

and w to infinity through the upper half-plane
(see Myers & Kerschen 1995 for full details). Finally, we have

D3(θ) =
iAN

[w(β−2
∞ − w cos θ)]1/2

[
1− M2

∞
β2
∞
− β−2

∞
β−2
∞ − w cos θ

]
+

iAN(γ + 1)M4
∞

w3/2(β−2
∞ + w)1/2β4

∞

[
β−2
∞
2

cos θ − w

4
cos 2θ

]
. (C 8)
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